Final Exam, Math 530, Fall 2014

Ayman Badawi

QUESTION 1. Part 1: Questions to be answered outside class from i to iv.

- (i) Show that there is no simple group of order 992. [hint: write $992 = 2^5.31$]
- (ii) Suppose that $|G| = m.q_1^{n_1}....q_k^{n_k}$, where m is an integer > 1, $q_1, ..., q_n$ are distinct prime numbers such that each $q_i > m$. Suppose that G has a subgroup, say H, of order $q_1^{n_1}....q_k^{n_k}$. Prove that H is a normal subgroup of G.
- (iii) Let G be an infinite simple group, and let H be a subgroup of G. Prove that the index of H in G is infinite, i.e., show that $[H:G] = \infty$.
- (v) Let G be an abelian group of order p^n , where p is prime and $n \ge 2$. Suppose that G has a unique subgroup of order p^k for some integer $1 \le k < n$. Prove that G is cyclic.
- (vi) Let G be an abelian group of order p^7 , where p is prime. Suppose that G has a unique cyclic subgroup of order p^4 . Find all non-isomorphic groups of order p^7 that satisfy this property. Briefly justify your answer
- (vii) Let G be a group of order $2^2 \cdot 3^k$ for some integer $k \ge 2$. Prove that G is not simple. [Hint: somehow you need to build a group homomorphism F from G into S_n for some n such that $Ker(F) \ne \{e\}$]
- (viii) Prove that $L = Z_8 \times Z_{10}$ is group-isomorphic to $Z_2 \times Z_{40}$. How many elements of order 20 does L have?.
- (ix) Given $|G| = p^n m$ for some prime p such that $n \ge 2$. Suppose that G has a unique subgroup, say H, of or order p. Prove that H is a normal subgroup of G. If G/H is cyclic, then prove that G is cyclic.
- (x) Given G is a noncyclic group of order 17.11^2 . Prove that G is abelian. Find all noncyclic non-isomorphic groups of order 17.11^2 .

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com

Name-